Robust Tensor Clustering with Non-Greedy Maximization
نویسندگان
چکیده
Tensors are increasingly common in several areas such as data mining, computer graphics, and computer vision. Tensor clustering is a fundamental tool for data analysis and pattern discovery. However, there usually exist outlying data points in realworld datasets, which will reduce the performance of clustering. This motivates us to develop a tensor clustering algorithm that is robust to the outliers. In this paper, we propose an algorithm of Robust Tensor Clustering (RTC). The RTC firstly finds a lower rank approximation of the original tensor data using a L1 norm optimization function. Because the L1 norm doesn’t exaggerate the effect of outliers compared with L2 norm, the minimization of the L1 norm approximation function makes RTC robust to outliers. Then we compute the HOSVD decomposition of this approximate tensor to obtain the final clustering results. Different from the traditional algorithm solving the approximation function with a greedy strategy, we utilize a non-greedy strategy to obtain a better solution. Experiments demonstrate that RTC has better performance than the state-ofthe-art algorithms and is more robust to outliers.
منابع مشابه
Robust Method for E-Maximization and Hierarchical Clustering of Image Classification
We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared...
متن کاملRobust Principal Component Analysis with Non-Greedy l1-Norm Maximization
Principal Component Analysis (PCA) is one of the most important methods to handle highdimensional data. However, the high computational complexitymakes it hard to apply to the large scale data with high dimensionality, and the used 2-norm makes it sensitive to outliers. A recent work proposed principal component analysis based on 1-normmaximization, which is efficient and robust to outliers. In...
متن کاملNon-Greedy L21-Norm Maximization for Principal Component Analysis
Principal Component Analysis (PCA) is one of the most important unsupervised methods to handle highdimensional data. However, due to the high computational complexity of its eigen decomposition solution, it hard to apply PCA to the large-scale data with high dimensionality. Meanwhile, the squared L2-norm based objective makes it sensitive to data outliers. In recent research, the L1-norm maximi...
متن کاملUsing Greedy Clustering Method to Solve Capacitated Location-Routing Problem with Fuzzy Demands
Using Greedy Clustering Method to Solve Capacitated Location-Routing Problem with Fuzzy Demands Abstract In this paper, the capacitated location routing problem with fuzzy demands (CLRP_FD) is considered. In CLRP_FD, facility location problem (FLP) and vehicle routing problem (VRP) are observed simultaneously. Indeed the vehicles and the depots have a predefined capacity to serve the customerst...
متن کاملAvoiding Optimal Mean Robust PCA/2DPCA with Non-greedy ℓ1-Norm Maximization
Robust principal component analysis (PCA) is one of the most important dimension reduction techniques to handle high-dimensional data with outliers. However, the existing robust PCA presupposes that the mean of the data is zero and incorrectly utilizes the Euclidean distance based optimal mean for robust PCA with `1-norm. Some studies consider this issue and integrate the estimation of the opti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013